Anmelden | Registrieren
|
Aktuelle Zeit: Mi 5. Feb 2025, 21:07
|
Unbeantwortete Themen | Aktive Themen
|
Seite 1 von 1
|
[ 3 Beiträge ] |
|
Autor |
Nachricht |
lvogt
|
|
Betreff des Beitrags: einfache Polynomdivision (Mathe)? Verfasst: Mo 23. Jan 2012, 05:48 |
|
Registriert: Fr 15. Apr 2011, 11:22 Beiträge: 396
|
ich habe eine frage zu mathe ... wir haben erst einfache polynomdivision also ich kann noch nich durch ne rechnung oder so an die x stellen kommen (falls das gehen sollte) und wir machen das durch "raten" und "ausprobieren", jetzt wei ich aber nicht genau wie ich weiter machen soll:
Aufgabe und meine Lsung: (2x^4-5x^3+6x^2-9x+2):(x-2)= 2x^3-x^2+4x-1
und ich muss aber x^2 vorne haben (habe ja jetzt noch x^3) damit ich die pq-formel anwenden kann, wie finde ich denn jetz die andere nullstelle heraus in der schule haben wir die letzte zahl (also ohne x wert) genommen und dann durch die teiler (in diesem fall 2) geprft (also teiler fr x eingesetztund 0 gesetzt) ob 0=0 rauskommt, wenn ja dann konnte man mit der zahl weiterrechnen aber hier bei dieser aufgabe war x=2 schon vorgegeben und mir 1 hab ich schon ausprobiert ...wie muss ich jetzt weiterrechnen???
|
|
Nach oben |
|
|
SBeike
|
|
Betreff des Beitrags: einfache Polynomdivision (Mathe)? Verfasst: Do 16. Feb 2012, 05:33 |
|
Registriert: Do 7. Apr 2011, 20:39 Beiträge: 68
|
Ich habe hier mal auf Woframalpha alle Nullstellen berechnen lassen: http://www.wolframalpha.com/input/?i=2x%5E4-5x%5E3%2B6x%5E2-9x%2B2%3D0 Wie Du siehst, gibt es fr Dein Polynom nur eine einfache Nullstelle bei x=2 und noch eine weitere, welche man aber wohl kaum durch Raten ermitteln kann! Es gibt da noch die Cardanoschen Formeln zur Berechnung von Nullstellen von Polynomen 3. und 4. Grades, aber diese beinhalten komplexe Zahlen und das schiet - so glaube ich - ber das Ziel hinaus. Bleibt der Schluss, dass es sich entweder um einen Schreibfehler handelt oder es wirklich keine ganzzahligen Nullstellen auer der 2 gibt.
|
|
Nach oben |
|
|
sayocaizejon
|
|
Betreff des Beitrags: einfache Polynomdivision (Mathe)? Verfasst: Do 11. Sep 2014, 22:10 |
|
Registriert: Fr 15. Apr 2011, 06:07 Beiträge: 22
|
Diese Funktion ist eine Parabel und hat beim x=2 einen Scheitelpunkt, von daher besitzt sie keine weiteren Schnittpunkte mit der X-Achse.
|
|
Nach oben |
|
|
|
Seite 1 von 1
|
[ 3 Beiträge ] |
|
Wer ist online? |
Mitglieder in diesem Forum: 0 Mitglieder und 23 Gäste |
|
Du darfst keine neuen Themen in diesem Forum erstellen. Du darfst keine Antworten zu Themen in diesem Forum erstellen. Du darfst deine Beiträge in diesem Forum nicht ändern. Du darfst deine Beiträge in diesem Forum nicht löschen. Du darfst keine Dateianhänge in diesem Forum erstellen.
|