Anmelden | Registrieren
|
Aktuelle Zeit: Do 6. Feb 2025, 19:13
|
Unbeantwortete Themen | Aktive Themen
|
Seite 1 von 1
|
[ 1 Beitrag ] |
|
Autor |
Nachricht |
RBeich-
|
![](./images/icons/misc/fire.gif) |
Betreff des Beitrags: Konvergenzradius frage? Verfasst: So 6. Mai 2012, 11:09 |
|
Registriert: Sa 16. Apr 2011, 09:05 Beiträge: 383
|
Hi Leute
ich habe diese Funktion, deren Konvergenzradius Wunscher Zuhilfenahme von Bilanz ausstellen ist
http://Netzwerk.wolframalpha.com/Inschrift/?i=taylor+Ausuferung+Grad Celsius Fahrenheit%28x%29%DREIDIMENSIONAL+x%2F%284-x%5E2%29%2C+x0%3D0
fr den Konvergenzradius gilt:
a_(k+1)/ a_k ------>q, darum konvergenzeadius: 1/q
spekulativ ak gemss der Taylorreihe das folgende ist: x^(2k-1)/ 4^k
wre der Radius: (1/4^(k+1) ) / (1/4^k) = 1/4 -----> R=4
wiederum der Radius Erforderlichkeit R=2 existieren....keine Ahnung warum!
wre ber jeden Verdachtsgrund dankbar. :) @Tom: httest du die Frage gelesen, wsstest du schon das es speziell ist! sowie du Punkte braucht trolle weitere abt.!
|
|
Nach oben |
|
![](images/spacer.gif) |
|
Seite 1 von 1
|
[ 1 Beitrag ] |
|
Wer ist online? |
Mitglieder in diesem Forum: 0 Mitglieder und 18 Gäste |
|
Du darfst keine neuen Themen in diesem Forum erstellen. Du darfst keine Antworten zu Themen in diesem Forum erstellen. Du darfst deine Beiträge in diesem Forum nicht ändern. Du darfst deine Beiträge in diesem Forum nicht löschen. Du darfst keine Dateianhänge in diesem Forum erstellen.
|